Universal Quantum Signatures of Chaos in Ballistic Transport
نویسندگان
چکیده
منابع مشابه
Quantum transport through ballistic cavities: soft vs hard quantum chaos
We study transport through a two-dimensional billiard attached to two infinite leads by numerically calculating the Landauer conductance and the Wigner time delay. In the generic case of a mixed phase space we find a power-law distribution of resonance widths and a power-law dependence of conductance increments apparently reflecting the classical dwell time exponent, in striking difference to t...
متن کاملMisleading signatures of quantum chaos.
The main signature of chaos in a quantum system is provided by spectral statistical analysis of the nearest-neighbor spacing distribution P(s) and the spectral rigidity given by the Delta(3)(L) statistic. It is shown that some standard unfolding procedures, such as local unfolding and Gaussian broadening, lead to a spurious saturation of Delta(3)(L) that spoils the relationship of this statisti...
متن کاملSignatures of Randomness in Quantum Chaos
We investigate toy dynamical models of energy-level repulsion in quantum eigenvalue sequences. We focus on parametric (with respect to a running coupling or ”complexity” parameter) stochastic processes that are capable of relaxing towards a stationary regime (e. g. equilibrium, invariant asymptotic measure). In view of ergodic property, that makes them appropriate for the study of short-range f...
متن کاملSignatures of homoclinic motion in quantum chaos.
Homoclinic motion plays a key role in the organization of classical chaos in Hamiltonian systems. In this Letter, we show that it also imprints a clear signature in the corresponding quantum spectra. By numerically studying the fluctuations of the widths of wave functions localized along periodic orbits we reveal the existence of an oscillatory behavior that is explained solely in terms of the ...
متن کاملSignatures of evanescent transport in ballistic suspended graphene-superconductor junctions
In Dirac materials, the low energy excitations behave like ultra-relativistic massless particles with linear energy dispersion. A particularly intriguing phenomenon arises with the intrinsic charge transport behavior at the Dirac point where the charge density approaches zero. In graphene, a 2-D Dirac fermion gas system, it was predicted that charge transport near the Dirac point is carried by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Europhysics Letters (EPL)
سال: 1994
ISSN: 0295-5075,1286-4854
DOI: 10.1209/0295-5075/27/4/001